OpenAIS: Towards an open system architecture for IP connected lighting

Stefan Verbrugh
Philips Lighting B.V.
Contents

1. Consortium
2. Project Aim and target application
3. OpenAIS Vision
4. Challenges and project plan
5. Process of defining the requirements
6. Conclusion
Consortium

Johnson Controls

Philips

Zumtobel

TRIDONIC

NXP

ARM

TU/e

ESI

Covering the whole value chain

3 years, Jan 2015 - Dec 2017
Philips project Lead

Supported by the Horizon 2020 funding of the European Union
Project Aim

- Define an All-IP open Lighting system architecture
- Support maintaining the leading position of the European lighting industry in the IoT era
- Align the European industry to adopt this architecture
- Enable eco-system of suppliers of interoperable components
- Create renewed value space for European Industry
OpenAIS target application

- Professional Indoor
- Focus on Offices
 - New builds and refurbishments
 - Small and large installations
- Global, but validation will be in Europe
OpenAIS Vision

Make lighting part of the Internet of Things

The Internet of Light:

- IoT is the future for connected Lighting
- IP connectivity to each luminaire (IPv6)
- Exploit standards and HW & SW components from other IoT applications
 - Achieve economy of scale
 - Standards maintained by much larger industry
- Open architecture enables: Use of multi-vendor equipment
- Extendable architecture allowing software application updates to extend control functionality after installation
- Serves as a valuable infrastructure for other functions in a building

200 – 400 million luminaires/year sold in 2020 → number of lighting nodes can become considerable (estimation 35 – 75 billion total IoT nodes WW)
Challenges in a changing world

• IoT is an emerging concept:
 – OpenAIS is running in parallel to IoT being shaped
 – Numerous protocols and standards, which to be used for lighting?
 – Unified Data Model for lighting and BMS

• Identify new value spaces, related to:
 – Use of office buildings in the 2020’s
 – Technical possibilities of the 2020’s

• Data privacy & Protection

• Shape towards a Dominant Design
Technical challenges

- Security of constrained devices
- Align domain model lighting & building automation
- Network: Shared IT or dedicated lighting
- Low standby power
- Interoperability between vendors
- Long system lifetime support (20+ years)
- Extensibility: add functions over lifetime
- Balance system cost vs added value
- Facilitate easy specifying, installing, commissioning and maintenance
Project plan (1)

- Identify system requirements for the 2020’s
- Define the best System Architecture for connected lighting:
 - To meet end user needs of the 2020’s
 - Exploiting the Internet of Things
- Validate in a real setting whether anticipated user needs are met
- Prepare standardization
WP 5: Validation by pilot implementation
- Installation at pilot customer
- Assess performance

WP 1: Scenarios and Requirements
- Interviews
- Update and complete

WP 2: System Architecture
- Architecture
 - Candidates
 - Final
- Architecture public via www.openais.eu
- Review + extend SW

WP 4: Integration of components
- Integration
- Integration

WP 3: Design and realization (building blocks for integration and for pilot)
- Make HW & SW building blocks
- Building blocks for pilot

2015 2016 2017
Process of defining the requirements

Identify Stakeholders 2020’s
23 Stakeholder types, e.g.:
- User (office worker)
- Building Owners
- IoT/IP Providers
- Consultants & Specifiers
- Installation companies
- Application writers
- Lighting companies

Interview stakeholders:
- Vision 2020’s
- Experience with existing systems

Over 700 scenarios collected, now combining, clustering and selecting

Scenario’s & use cases 2020’s
- Facilitate activities
- Comfort & Wellbeing
- Efficient building management
- Ease of installation, commissioning

Quality Requirements

Scenarios Workshop

OpenAIS Requirements
Office trends

Nomadic behavior

Responsive and adaptable environments

Digital environments

Intensive collaboration

New work experience

Total Engagement
Scenarios Workshop

- 2-day workshop with team members and visionaries
- Analyzing trends in offices and brainstorming about consequences for OpenAIS system
Some examples of key topics mentioned:

- **Buildings Facilitate the activities of its users**
 - The building is welcoming, shows where to go (also if someone comes once or for the first time)
 - Facilitate efficiency of activities

- **Buildings enhance Comfort and Wellbeing, e.g.**:
 - Attract and keep scarce talents
 - Create a feeling that the employer cares about the people
 - Natural atmosphere by change Color Temperature and intensity over the day or in accordance to the weather conditions
 - Control the lighting with smart phone or via PC
Interviews (2)

• Strengthen efficient building management:
 – Use occupancy sensor information to detect which areas are often used and which are rarely used → optimize the building use
 – Reconfiguring the lighting must be easy and not require an expert
 – Detailed energy consumption report per floor or area
 – Cost saving: Trend towards less m² per person → accepted by office workers if the building offers more comfort

• Concerns:
 – Too many parties involved, risk of responsibility shift
 – IP luminaires too expensive
 – Need a different installer for IP devices
 – Need new tooling, especially for fault finding
 – Commissioning is currently too complex
Summary

• OpenAIS aims at the development of the Internet of Light with a strong consortium

• The OpenAIS project will develop and validate a system architecture for IP connected lighting

• The Internet of Light can lead to considerably higher added value of buildings

Don’t forget to keep checking our results at: www.openais.eu
Thank you

www.openais.eu
Questions?

www.openais.eu